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Abstract 

In this paper we present a novel framework for portfolio selection using deep neural networks 

and elastic net regularization: At the beginning of each month T, we follow a three-step 

methodology. First, for each stock, we use the previous seven years of data in order to compute 

over 36 firm-specific factors. Second, we perform features selection using elastic net 

regularization. Finally, we train a deep neural network in order to learn portfolio weights and 

hold this portfolio until the end of the month T. Compared with momentum, long-term reversal, 

and short-term reversal strategies, our approach demonstrates a superior performance in terms of 

the monthly rate of return (2% versus 1.22% for long-term reversal, 1.15% for momentum, and 

only 0.68% for short-term reversal), Sharpe ratio (21.67% versus 19.31% for momentum, 

15.51% for long-term reversal, and 8.69% for short-term reversal), and the monthly risk-adjusted 

return (1.85% versus 0.74% for momentum, 0.72% for long-term reversal, and 0.31% for short-

term reversal). The results of our approach are all statistically significant at 1% level.  

Keywords: portfolio selection, characteristic-sorted portfolios, factors selection, machine 

learning, deep learning, elastic net regularization, Casablanca Stock Exchange 

1. Introduction 

Selecting portfolios based on one or more factors (i.e. idiosyncratic characteristics) is ubiquitous 

in empirical finance. The premise behind it is to discover whether the expected returns of an 

asset are related to a certain characteristic. A natural way to investigate this is to sort assets by 

the characteristic value, divide them into portfolios, and then test whether the differences in 

average return across these portfolios are statistically significant or not. This methodology has 

been widely used in order to identify a number of market anomalies and to establish profitable 

trading strategies(Cattaneo, Crump, Farrell, & Schaumburg, 2016).     

Applications of this approach are too numerous to list, but some of the influential work includes: 

- Momentum portfolios: Jegadeesh and Titman (1993)selected portfolios based on the 

intermediate horizon past returns (i.e. cumulative return over the previous three-to-twelve 

months). Holding these portfolios for the next three-to-twelve months, they observed that 
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portfolios constructed with the winners of the recent past outperform portfolios formed with 

previous losers. 

- Enhanced momentum: The traditional momentum effect (Jegadeesh & Titman, 1993) can be 

enhanced by considering the interaction of the formation period returns with certain firm-level 

characteristics. Some of these characteristics are the nearness to the 52-Week (George & 

Hwang, 2004), formation period return consistency (Grinblatt & Moskowitz, 2004), volatility 

(Bandarchuk & Hilscher, 2013; Jiang, Lee, & Zhang, 2005; Zhang, 2006), intermediate past 

performance (Novy-Marx, 2012), extreme past returns (Bandarchuk & Hilscher, 2013), 

information discreteness (Da, Gurun, & Warachka, 2014), continuing overreaction (Byun, 

Lim, & Yun, 2016), and R-squared (Hou, Xiong, & Peng, 2006). 

- Long-term return sorted portfolios: In contrast to Jegadeesh and Titman (1993), Bondt and 

Thaler (1985) and McLean (2010) document a long-term reversal phenomenon based on a 

stock’s three-to-five years cumulative return. Thus, portfolios of stocks that outperform in the 

previous three-to-five years underperform in the following three-to-five years. 

- Short-term return sorted portfolios: Jegadeesh (1990), Lehmann (1990), Da, Liu, and 

Schaumburg (2013) document negative short-term return autocorrelations. They demonstrated 

that the previous short-term return (one-to-four week) tend the reverse during the following 

month. As a consequence, abnormal returns could be obtained by investing in stocks that 

performed poorly in the near past. 

- Technical analysis: Studies in empirical finance literature suggest several potential technical 

trading rules. For example, Han, Yang, and Zhou (2013)document that a moving average 

timing strategy outperforms the buy and hold strategy. Specifically, stocks with a price above 

(below) the n-day (10-, 20-, 50-, 100-, 200-day) moving average price outperform 

(underperform). 

- Beta sorted portfolios: On the contrary to the Capital Asset Pricing Model (i.e. CAPM) 

prediction, according to which, in an efficient market, investors realize above-average returns 

only by taking above-average risks, Baker et al. (2011), Frazzini and Pedersen  (2014), Hong 

and Sraer (2016) document that low-beta stocks outperform high-beta stocks. 

- Lottery-type portfolios: Some recent studies argue that stocks with lottery-type characteristics 

tend to underperform. Kumar (2009), Boyer, Mitton, and Vorkink (2010)used the 

idiosyncratic skewness of returns distribution as a proxy to the lottery-type feature of a stock. 

In contrast, Bali, Cakici, and Whitelaw (2011) proposed to rank stocks based on the maximum 

daily return over the past one month instead of idiosyncratic skewness. 

In fact, these approaches use typically one or two factors in order to construct a portfolio. 

However, and more recently, evidence has been established that machine learning techniques and 

specifically deep neural networks are capable of identifying complex patterns in the financial 

market by incorporating various types of explanatory variables (i.e. factors or return predictive 

signals). For reference, see Krauss, Do, and Huck (2017); Abe and Nakayama (2018); as well as 

Fischer and Krauss (2018). However, most of these applications of learning algorithms to 

financial data are based on predicting the value of output variables given input variables, and 

then use these predictions (often noisy) in order to form a portfolio. Bengio (1997) argues that 
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better results can be achieved by learning the model parameters that directly optimize the 

financial criterion of interest (e.g. maximizing the portfolio rate of return, minimizing the 

portfolio volatility, or combining these two criteria by maximizing the reward-to-risk ratio, i.e. 

Sharpe ratio). 

In this paper, we primarily present a novel framework for portfolio selection using deep neural 

networks and elastic net regularization. Our contribution to the existing literature is two folds. 

First, we follow the recommendation of Bengio (1997) and we train our deep neural network to 

directly optimize a financial-based cost function. However, unlike Bengio (1997), our framework 

is designed to learn portfolio weights directly instead of using a separate trading module. Second, 

we present a systematic approach for choosing the best subset of return predictive signals from a 

large set of factors using elastic net regularization. The remainder of this paper is organized as 

follows. In section 2, we formally define the architecture of our deep neural network. Section 3 is 

devoted to describing the data used in our experiment. Experiment design is presented in section 

4. Section 5reports the results and discusses the most relevant findings. Finally, section 6 

concludes. 

2. Model Formulation 

Let  denotes the number of stocks available for trading at the beginning of the month  (i.e. 

portfolio formation day). Each stock  is represented as a vector of  real features or 

firm-specific characteristics that prior scholarly research has identified as being predictive of 

stock returns, i.e. . Studies on return predictive signals are too numerous to list, but 

some of the seminal work is discussed in the introduction and appendix 1 of this paper. 

Let  refers to a vector of  real labels , . In our application,  denotes the 

true/observed monthly return of stock ,  at month . 

We define a training example as  where  is a vector of  

stocks , , and  is the space of all stocks. 

Our goal is to learn an asset allocation function , where ,  

represents the weights of the  asset in our portfolio. That is, our function  jointly maps a 

group of  stocks to a vector of portfolio weights of the same size. In this paper, we do not allow 

short-selling thus, we have 

 

 

,  

In this work, we parameterize the function  using a deep neural network. As discussed earlier, 

Feed-Forward neural networks have widely been applied in finance. We believe a deep neural 

network fits well in our application compared to other models for two reasons. First, neural 
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networks scale well to high dimensional inputs (Ai et al., 2019). This is important because in our 

framework the function  takes stocks as input and each stock is represented as a vector of a 

potentially large number of features. Second, deep neural networks are very flexible in learning a 

mapping from inputs to outputs. For instance, and as will be discussed later in this paper, the use 

of the softmax activation function in the output layer of our deep neural network allows us 

learning a mapping from firm-specific characteristics of  stocks to a vector  

representing the portfolio weights. 

In this paper, we construct the input layer of our neural network by concatenating the vectors 

representing each stock. Specifically, let 

 

 

 

 

Given the above input layer, we build a multi-layer feed-forward network with two hidden layers 

as follows: 

 

 

 

Where  and  denote the weight matrix and the bias vector in the  layer,  is a non-linear 

activation function. In this paper, we use the rectified linear unit (ReLU) 

function:  

The output of our function is thus defined as: 

 

 

 

Where  and  are the weight matrix and the bias vector in the output layer,  in the softmax 

activation function. The softmax function  is defined by the formula: 
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The softmax function takes as input a vector  of  real numbers, the vector  might not sum to 1 

and some of its components could be negative, or greater than 1, and normalizes it into a unit 

vector consisting of  real numbers proportional to the exponentials of the input numbers. That 

is, after applying the softmax function, each component will be in the interval  and the 

components will sum up to 1. Thus, in our framework, the output of the softmax function can be 

interpreted as portfolio weights when short-selling is not allowed. 

In order to learn the function , we train our neural network by minimizing the empirical loss 

over the training data: 

 

 

 

Where  denotes the set of training examples and  is a local loss function defined as 

 

 

 

Where  denotes the portfolio rate of return. Thus, minimizing is equivalent to 

maximizing the portfolio rate of return. 

Figure 1 shows a simplified visual representation of our network when sitting  stocks and 

each stock is represented by a vector of  features. 

In this work, we tried to keep the objective function and the design of the network architecture as 

simple as possible. We leave the exploration of more advanced representations (e.g. recurrent 

connections, convolutional layer, etc.) and cost functions (e.g. minimizing the risk as measured 

by the portfolio variance or maximizing the portfolio sharp ratio) as future work. 
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3. Data 

The data in this paper are collected from two main sources. Moroccan stock data are from the 

Casablanca Stock Exchange (CSE) website and the risk-free asset return data are from the Bank-

Al-Maghreb (the central bank of Morocco) website. The risk-free rate was measured as the 

monthly yield on the Moroccan 13-week Treasury bills. Market returns are calculated using the 

MASI index. 

Our sample consists of all firms listed on the CSE during the period of October 2007 (i.e. the 

first portfolio formation month) through July 2019 with at least eight years of data prior to the 

portfolio formation month . Three years of data is used as a training set and an additional six 

years of data is required in order to compute some features (e.g. five-year cumulative returns, 

while skipping six months between the formation and holding period, is needed in order to 

calculate the long-term reversal factor (Bondt & Thaler, 1985)). Thus, the data used in this paper 

covers the whole period from 1999 through 2019. Figure 2 shows the number of stocks satisfying 

this criterion for each formation month during our study period. 

Figure 1. Architecture of our artificial neural network. For illustrative purposes, if the number of stocks  

and each stock is represented by a feature vector of length , then the input layer will be a vector of length 

 and the output layer will be a vector of length . In our application, we chose the first 

hidden layer to be half the length of the input layer, and the second hidden layer the half of the first hidden 

layer. 
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4. Experiment Design 

At the beginning of each month  (i.e. the portfolio formation date), starting from October 2007 

through July 2019, we follow a three-step methodology. First, we use the previous seven years of 

data in order to compute the feature space and generate the training/validation sets. Second, we 

perform features selection using elastic-net regularization. Finally, we train the deep neural 

network described in the previous section of this paper, in order to learn portfolio weights and 

hold this portfolio until the end of the month  (i.e. monthly rebalancing). The remainder of this 

section follows the three-step methodology outlined above. 

4.1. Features Generation 

As discussed previously in this paper, studies in the asset pricing literature document hundreds of 

factors that appear to predict stock returns. Jacobs (2015) and Green, Hand, and Zhang (2013) 

provide an excellent review. However, due to data availability constraints, in this work, we focus 

on a subset of these factors that can be directly or indirectly derived from the firm’s historical 

stock prices and trading volumes. 

Let  denote the adjusted closing price of stock  at day . Then, we define the simple daily 

return  for each stock  as 

Figure 2. Number of stocks by portfolio formation month. At the beginning of each month , starting 

from   October 2007, we consider all firms listed on CSE with at least eight years of historical data. 

Three years of data is used as a training set and an additional six years of data is required to compute 

some features. 
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Let  represent the set of trading days in month . Following the literature, e.g. (Hou et al., 

2006; Huddart, Lang, & Yetman, 2009; Lee & Swaminathan, 2000), we define the monthly 

returns  for each stock  as the compounded daily returns observed during the month  

 

 

 

In addition, given that the features are calculated on a daily basis, in this paper, we define a 

month as including 21 trading days. 

In this paper, we consider about 36 return predictive signals derived from the 7 classes of factors 

discussed in section 1 of this paper (i.e. momentum, enhanced momentum, long-term reversal, 

short-term reversal, technical analysis, beta, and lottery-type). The complete list of these factors 

and their calculation details are provided in appendix 1 of this paper. 

4.2. Features Selection 

As discussed earlier in this paper, an increasingly large number of researchers document 

hundreds of factors that appear predictive of stock returns. However, studies in the asset pricing 

literature suggest that only a few of them should be sufficient to capture the dynamic of stock 

returns. In fact, most of these factors are likely to be proxies for the same sources of return 

variation (Hou, Mo, Xue, & Zhang, 2019). Another possibility is that some proposed factors are 

the outcome of data mining (Chordia, Goyal, & Saretto, 2018). 

For this reason, among the 36 computed factors (see appendix 1), we select only a small subset 

of them as input to our model. More specifically, at the beginning of each month  we proceed as 

follow: 

- First, for each stock available for trading in that month, we compute the whole set of features 

listed in appendix 1 of this paper; 

- Second, for each stock, we perform elastic net regularization(Zou & Hastie, 2005) using the 

last three years of historical data (skipping the most recent month of data in order to avoid the 

look-ahead bias when constructing the response variable) as a train/validation set. For each 

trading day, the feature space (i.e. input) is represented as a vector of 36 factors and the 

response variable (i.e. output) is the monthly expected return;  

- For each stock, the importance score of each factor is calculated as the scaled (between 0 and 

100) absolute value of its corresponding coefficient in the elastic net regression. 
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- Factors are ranked using the average importance score across all stocks available for trading 

in that month. To construct input to our deep neural network model, each stock will be 

represented as a vector of the top five factors. 

Figure 3 shows a ranking of all computed factors using the average importance score across all 

formation months and across all stocks. The code between parentheses refers to the ID of the 

corresponding factor in appendix 1. 

 

 

4.3. Deep Neural Network Training and Benchmark Strategies 

In order to take into account the non-stationarity of the financial time-series, and estimate 

performance over a variety of economic situations, multiple training experiments were 

performed on different training windows, at the beginning of each month , starting from October 

2007 through July 2019. Each time using the previous three years of computed features as a 

training set (again, as in elastic net regularization, we skip the most recent month of data in order 

to avoid the look-ahead bias when constructing the response variable). 

The performance of our approach is compared with three benchmarks that are well documented 

in the literature:  

Figure 3. The importance score of each factor is calculated as the scaled (between 0 and 100) absolute value of it 

corresponding coefficient in the Elastic Net regression. The model is estimated for each formation month and for 

each stock separately. This figure reports the average importance score across formations months and across 

stocks. 
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 Short-term Reversal Strategy: Short-term reversal portfolios are formed based on 1-month 

lagged cumulative returns and held for 1 month. At the beginning of each month , stocks are 

ranked in ascending order on the basis of previous month lagged cumulative returns. Based on 

these rankings, five quintile portfolios are formed that equally weight the stocks contained in 

the top quintile, the second quintile, and so on. In this paper, we report the performance of the 

5th quintile portfolio. 

 Momentum Strategy: Momentum portfolios are formed based on 12-months lagged 

cumulative returns and held for 3 months. At the beginning of each month , stocks are 

ranked in ascending order on the basis of 12-months lagged cumulative returns from  

to  (i.e. we skip a month between the portfolio formation period and the holding period). 

Based on these rankings, five quintile portfolios are formed that equally weight the stocks 

contained in the top quintile, the second quintile, and so on. In this paper, we report the 

performance of the top quintile portfolio. 

 Long-term Reversal Strategy: Long-term reversal portfolios are formed based on 60-months 

lagged cumulative returns and held for 36 months. At the beginning of each month , stocks 

are ranked in ascending order on the basis of 60-months lagged cumulative returns from 

 to  (i.e. we skip six months between the portfolio formation period and the 

holding period). Based on these rankings, five quintile portfolios are formed that equally 

weight the stocks contained in the top quintile, the second quintile, and so on. In this paper, 

we report the performance of the 5th quintile portfolio. 

5. Results and Discussion 

We report our findings in Table 1from both statistical and economic significance points of view. 

Panel A highlights some statistical properties of the monthly returns of the four portfolios. The 

results obtained for the three conventional strategies (short-term reversal, momentum, and long-

term reversal) were in line with the expectations. They all generate a positive and statistically 

significant average monthly return. However, the momentum strategy is less risky (i.e. smallest 

standard deviation) than short-term reversal and long-term reversal. In contrast, our deep neural 

network approach generates the highest average monthly return (1.99% a month) but it is riskier 

than the conventional approaches (8% standard deviation versus 6% for long-term reversal and 

approximately 5% for both momentum and short-term reversal). Figure 4 highlights the 

uncertainty around the average monthly returns of the four investing strategies. 

The high volatility characteristic of our approach is somewhat expected because our deep neural 

network was not explicitly trained to reduce the risk (as measured by the standard deviation of 

returns). Rather, it was specifically trained to maximize the portfolio rate of return (as specified 

in section 2 of this paper). In upcoming work, we plan to address this issue by incorporating the 

Sharpe ratio (reward-to-variability ratio) as an objective function. However, even though the 

monthly returns of our approach are more volatile than the conventional approaches, panel B of 

Table 1 indicates that it achieves the highest Sharpe ratio, which indicates that our method 

generates the best reward-to-risk ratio (21.7% per unit of risk versus 19.31% for the momentum, 

15.51% for long-term reversal, and only 8.69% for short-term reversal). 
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Panel C of Table 1 reports the results of the Capital Asset Pricing Model (i.e. CAPM) regressions 

of the monthly returns of the four trading strategies 

 

Where  is the monthly return on strategy ,  is the monthly return on the market portfolio, and 

 is the monthly return on the risk-free asset. The alphas or risk-adjusted returns are in general 

smaller than unadjusted ones, ranging from 0.3% to 1.8% per month. The large and statistically 

significant risk-adjusted abnormal returns clearly demonstrate the profitability of our strategy 

compared to the conventional approaches. It generates an alpha that is about twice (0.018/0.007) 

as large as that generated by the momentum and long-term reversal strategies. Figure 5 illustrates 

the uncertainty around the monthly risk-adjusted returns of the four investing strategies. 

Table 1. Performance of Deep Learning Portfolios 

At the beginning of each month (i.e. the formation month), starting from October 1, 2007, until 

July 01, 2019, we use the previous historical data (up to approximately eight years of data) in 

order to compute all the features listed in Table 1, perform features selection using Elast ic-Net, 

and train the artificial neural network (ANN) described in Section 2 of this paper. Our portfolio 

is rebalanced monthly according to the weights learned by the ANN. This table compares the 

performance of our approach with three well documented investing strategies in the literature: 

short-term reversal, momentum, and long-term reversal. Summary statistics of monthly returns 

of the four portfolios are presented in panel A of this table. Some financial metrics and the 

CAPM test results are presented in Panel B and C respectively; t-statistics are in parentheses. ** 

and * indicate significance at the 1% and 5% levels, respectively. 

 Short-Term Reversal Momentum Strategy Long-Term Reversal  Deep Neural Network 

Panel A: Summary Statistics 
    

Average Monthly Return 0.00676 0.01154 0.01223 0.01995 

 (2.13)** (3.74)** (2.57)** (2.94)** 

Standard Deviation 0.04957 0.04710 0.06358 0.08087 

Skewness 0.52405 0.93196 1.33165 1.06297 

Kurtosis 1.09809 3.16957 3.77491 2.44280 

Minimum -0.12513 -0.12135 -0.14825 -0.14912 

1st Quintile -0.02392 -0.01823 -0.02832 -0.02412 

Median 0.00151 0.00648 0.00558 0.00375 

3rd Quantile 0.03531 0.03529 0.04072 0.05942 

Maximum 0.20444 0.24780 0.31083 0.35364 

     

Panel B: Financial 

Performance 

    

Average Excess Return 0.00431 0.00986 0.00610 0.01753 

 (1.36) (2.07)* (2.22)* (2.58)** 

Sharpe Ratio 0.08690 0.19311 0.15506 0.21671 

Annualized Return 8.42% 14.77% 15.70% 26.74% 

     

Panel C: CAPM Test 
    

Alpha 0.00313 0.00736 0.00715 0.01845 

 (1.26) (3.10)** (1.74)* (2.74)** 

Beta 0.71960 0.69895 0.73499 0.36744 

 (12.45)** (12.77)** (8.03)** (1.93) 
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Figure 5. For each investment strategy, we report the 95% confidence interval of the parameter alpha of the regression of 
the monthly excess returns on the market factor: 

. 

Figure 4. For each investment strategy, we report the 95% confidence interval (CI) of the corresponding mean monthly return. 
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6. Conclusion 

The results presented in this paper demonstrate an interesting application of machine learning in 

asset allocation. Our approach combines elastic net regularization for factors selection and novel 

deep neural network architecture designed specifically for learning portfolio weights. Compared 

with conventional approaches such as momentum, long-term reversal, and short-term reversal, 

our framework demonstrates a superior and statistically significant financial performance (in 

terms of the average monthly return, average excess return, annualized return, Sharpe ratio, and 

alpha). 

In future work, we plan to extend our study in two ways. First, by including a larger set of factors 

or return predictive signals. In this paper, we only covered a small subset of these factors (36 

factors in total) that could be directly or indirectly derived from the firm’s historical stock prices 

and trading volumes. However, the literature suggests hundreds of other factors such as accruals, 

dividends, earnings surprises, fundamental analysis etc. Jacobs (2015) and Green, Hand, and 

Zhang (2013) provide an excellent review. Second, and as discussed in section 5 of this paper, 

the monthly returns generated by our approach are more volatile than those generated by 

conventional approaches such as momentum, long-term reversal, and short-term reversal 

strategies. We plan to address this issue by incorporating the Sharpe ratio (the reward-to-

volatility ratio) as the training criterion (i.e. objective function) instead of the solo portfolio rate 

of return used in this version of our paper. 
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APPENDIX 1 

List of Factors and Calculation Details 

IDs Signal 

Selected 

Reference 

Papers 

Description Computational Details 

1 

Short-Term 

Return 

Reversal 

Jegadeesh 

(1990); 

Lehmann 

(1990); 

Da, Liu, 

and 

Schaumbu

rg (2013). 

Short-term 

(one-to-four 

week) past 

returns tend to 

reverse in the 

following 

month. 

We compute the cumulative return over 

the previous month. 

2a, 

2b, 

2c, 

2d 

Momentum 

Jegadeesh 

and 

Titman 

(1993). 

Intermediate 

horizon past 

returns (three-

to-twelve 

months) are 

positively 

related to 

future average 

returns. 

Similar to Jegadeesh and Titman (1993), 

we compute four proxies to the 

momentum signal. The cumulative return 

over the previous three, six, nine, and 

twelve months. We also impose the 

standard 1-month lag between the 

formation and holding period in order to 

reduce the effect of the short-term 

reversal anomaly documented by 

Jegadeesh(1990). 

3a, 

3b, 

3c 

Long-term 

Return 

Reversal 

Bondt and 

Thaler 

(1985); 

McLean 

(2010). 

Long-term past 

returns (three-

to-five years) 

are inversely 

related to 

future average 

returns and 

thus exhibit a 

long-term 

reversal 

phenomenon. 

Similar to Bondt and Thaler (1985), we 

compute the cumulative return over the 

previous three, four, and five years. In 

addition, we fellow McLean (2010) and 

impose a 6-month lag between the 

formation and holding period in order to 

reduce the effect of the momentum 

phenomenon observed by Jegadeesh and 

Titman (1993). 
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4a, 

4b 

Nearness to 

the 52-Week 

Low (High) 

George 

and 

Hwang 

(2004); 

Huddart et 

al. (2009). 

Nearness to the 

52-week low 

(high) is a 

better predictor 

of future 

returns than 

are past 

returns. 

The nearness to the 52-week low (high) 

is defined as the ratio between the last 

observed closing price and the minimum 

(maximum) price observed during the 

last twelve months. Similar to the 

literature, we include the standard 1-

month lag between the formation and 

holding periods.   

5a, 

5b, 

5c 

Consistent 

Winner 

Grinblatt 

and 

Moskowit

z (2004). 

Achieving a 

high past 

return with a 

series of steady 

positive 

returns appear 

to generate 

higher 

expected 

returns than a 

high past 

return 

achieved with 

just a few 

extraordinary 

months. 

We compute the number of times 

formation period returns were positive 

divided by the number of trading days in 

that same period. Following Grinblatt 

and Moskowitz (2004), we compute the 

consistency over the previous twelve 

months (with a 1-month lag) and over the 

previous three years (with a 6-month 

lag). We also included a measure for 

short-term consistency (over the previous 

month).   

6a, 

6b 
Volatility 

Jiang, Lee, 

and Zhang 

(2005); 

Baker, 

Bradley, 

and 

Wurgler 

(2011). 

Higher 

information 

uncertainty 

(measured by 

returns 

volatility) 

firms earn 

lower future 

returns than 

low volatility 

stocks. 

We compute two proxies. The standard 

deviation of returns observed in the 

previous twenty-five trading days (Jiang 

et al., 2005) and the standard deviation of 

monthly returns observed during the last 

five years (Baker et al., 2011). 
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7 

Intermediate 

Past 

Performance 

Novy-

Marx 

(2012). 

Intermediate 

horizon past 

performances 

measured over 

the period 

from twelve to 

seven months 

prior, better 

predict average 

returns than 

does the recent 

past 

performance. 

Following Novy-Marx (2012), we 

compute the intermediate past 

performance as the cumulative return 

over the period from twelve to seven 

months prior to the portfolio formation 

date.   

8 
Extreme Past 

Returns 

Bandarchu

k and 

Hilscher 

(2013). 

Momentum 

profits 

documented by 

Jegadeesh and 

Titman (1993) 

are higher for 

stocks with 

extreme past 

returns.  

Similar to Bandarchuk and Hilscher 

(2013), we compute the extreme past 

returns indicator as follow: 

 

Where  denotes the logarithmic 

return over the previous six months and 

 denotes the median return over the 

same period. 

9 
Information 

Discreteness 

Da, 

Gurun, 

and 

Warachka 

(2014). 

Momentum 

profits 

documented by 

Jegadeesh and 

Titman (1993) 

are higher 

among firms 

with 

information 

arriving 

continuously 

in small 

amounts.  

Defined as the sign (i.e. +1 or -1) of the 

cumulative return over the past twelve 

months (after skipping the most recent 

month) multiplied by the difference 

between the fraction of days with a 

negative return and the fraction of days 

with positive return (Da et al., 2014). 
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10 
Continuing 

Overreaction 

Byun, 

Lim, and 

Yun 

(2016). 

A measure of 

continuing 

overreaction is 

a better 

predictor of 

future returns 

than past 

returns. 

We closely follow Byun et al. (2016) and 

compute the continuing overreaction 

measure as the sum of the weighted 

signed volumes (increasing weights to 

more recent days) over the past twelve 

months (after skipping the most recent 

month) divided by the average trading 

volume over the same period. 

11a, 

11b 

Time since 

Last 

Low/High 

Huddart et 

al. (2009). 

Risk-adjusted 

stock returns 

following the 

week and the 

month after a 

stock moves 

beyond its 

previous high 

or its previous 

low are 

positive. This 

effect is more 

pronounced 

the longer the 

time since the 

previous high 

or low was 

established. 

Following Huddart et al. (2009), we 

compute the number of days since the 

last time the lowest/highest price was 

observed during the previous 52-week 

period. We normalize this number by the 

number of trading days during the same 

period. 

12a, 

12b, 

12c, 

12d, 

12e 

Nearness to 

the N-Day 

Moving 

Average 

Han, 

Yang, and 

Zhou 

(2013). 

A moving 

average timing 

strategy 

outperforms 

the buy-and-

hold strategy. 

Specifically, 

stocks with a 

price above 

(below) the n-

day moving 

average price 

outperform 

(underperform)

. 

Measured as the ratio between the stock 

price at day  and the average stock 

price in the previous  trading days. 

Following Han et al. (2013), we compute 

the nearness to the 10-day, 20-day, 50-

day, 100-day, and 200-day moving 

averages. 
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13 
Maximum 

Daily Return 

Bali, 

Cakici, 

and 

Whitelaw 

(2011). 

A negative and 

significant 

relation 

between the 

maximum 

daily return 

over the 

previous 

month and the 

expected stock 

returns. 

Following Bali et al. (2011), we compute 

the maximum daily return observed in 

the previous trading month: 

 

14 
Idiosyncratic 

Volatility 

Zhang 

(2006); 

Bandarchu

k and 

Hilscher 

(2013). 

Momentum 

profits 

documented by 

Jegadeesh and 

Titman (1993) 

are higher 

among firms 

with high 

idiosyncratic 

volatility. 

We estimate the market model at a 

rolling basis, at the end of each trading 

day, using weekly returns (computed by 

compounding daily returns) over the 

previous 52 weeks: 

 

Following Bandarchuk and Hilscher 

(2013), idiosyncratic volatility is 

measured as the annualized standard 

deviation of the residuals returns. 

15 R-Squared 
Hou et al. 

(2006). 

Momentum 

profits 

documented by 

Jegadeesh and 

Titman (1993) 

are higher 

among firms 

with low . 

We compute  from the market model: 

 

Following Hou et al. (2006), this model 

is estimated at a rolling basis, at the end 

of each trading day, using the weekly 

returns observed over the past year. 
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16a, 

16b, 

16c 

Residuals 
Da et al. 

(2013). 

Stock returns 

unexplained by 

fundamentals 

(i.e. residuals) 

are more likely 

to reverse in 

the short-term. 

In this paper, 

we also 

compute 

residuals-based 

momentum 

and residuals-

based long-

term reversal.  

Residuals are computed from the capital 

asset pricing model (CAPM): 

 

Where  denotes the risk-free rate at 

time . Following Da et al. (2013), the 

CAPM is estimated at a rolling basis, at 

the end of each trading day, using the 

monthly returns observed over the past 

five years. In this paper, we use three 

variants of residuals. Cumulative 

residuals over the previous month, 1-year 

(skipping one month between formation 

and holding periods), and 5-year 

(skipping six months between formation 

and holding periods). 

17a, 

17b 
Beta 

Baker et 

al. (2011); 

Frazzini 

and 

Pedersen  

(2014); 

Hong and 

Sraer 

(2016). 

Contrary to the 

CAPM 

prediction (in 

an efficient 

market, 

investors 

realize above-

average returns 

only by taking 

above-average 

risks), low-

beta stocks 

outperform 

high-beta 

stocks. 

We compute two proxies. The beta from 

the standard CAPM model as in Baker et 

al. (2011) and Frazzini and Pedersen  

(2014): 

 

The CAPM is estimated at a rolling 

basis, at the end of each trading day, 

using the monthly returns observed over 

the past five years. 

We also follow Hong and Sraer (2016) 

and compute the sum of betas from the 

model: 

 

Similar to Hong and Sraer (2016), this 

model is estimated at a rolling basis, at 

the end of each trading day, using the 

daily data over the last year. 
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18a, 

18b 

Idiosyncratic 

Skewness 

Kumar 

(2009); 

Boyer, 

Mitton, 

and 

Vorkink 

(2010) 

Idiosyncratic 

skewness and 

expected 

returns are 

negatively 

correlated. 

Thus, stocks 

with high 

idiosyncratic 

skewness 

(lottery-type 

stocks) 

underperform 

stocks with 

low 

idiosyncratic 

skewness. 

Computed as the skewness of residuals 

returns obtained by fitting the CAPM: 

 

The CAPM is estimated at a rolling 

basis, at the end of each trading day, 

using the daily returns observed over the 

past six months similar to Kumar (2009). 

We also compute another proxy using the 

previous 5-year daily returns as in Boyer 

et al. (2010). 
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