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Abstract  

Financial time series are often found to be heavy-tailed and skewed. Motivated from Skewed-t 

and Asymmetric Laplace distributions, two new M-estimators, called ST and AL, respectively, 

are introduced for estimation of GARCH-type models. Performance of estimators is checked 

with commonly used quasi-maximum likelihood, least absolute deviation and other robust 

estimators, for both symmetric and asymmetric models through a Monte Carlo study. Results of 

simulation revealed that both estimators provide accurate parameter estimates of GARCH 

models outperforming competing estimators when errors are generated from non-normal 

distributions. An application to real data set shows that these estimators also give better Value-

at-Risk forecasts. 

Keywords: M-estimators, Skewed-t, Asymmetric Laplace, GARCH, robust. 

1 INTRODUCTION 

Instantaneous variability or volatility is an important concept in financial time series. In 

aninfluential paper, the autoregressive conditional heteroscedastic (ARCH) model was 

introduced by Engle (1982)in which the volatility of current asset return is represented as the 

linear function of past squared returns. This model could capture some empirical stylised facts 

such as heavy-tailedness, volatility clustering and time varying variability which are associated 

with financial time series. Many other extensions have been proposed since the introduction of 

the ARCH model. Among those the generalized ARCH (GARCH) model of Bollerslev (1986) is 

the most popular and widely-used.  

The impact on conditional variance, as a result of variations of unexpected returns, plays 

a significant role in modeling volatility. However, in the GARCH model it is observed that the 

unexpected rise gives limited contribution towards the conditional variance than the 

unanticipated decrease. Glosten et al. (1993) introduced an asymmetric GARCH model also 

known as the GJR model. Consider the returns , such that 

 

where  are unobservable identical and independently distributed errors which are 

symmetric about zero. In the GJR(1, 1) model, the conditional volatility is defined as 
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where  with  as an indication function and  is the 

vector of unknown parameters in a parameter space, such that 

. 

Under these conditions, the model stated in equation (1) and (2) is known to be strict stationary.  

In the GJR(1, 1) model the positive returns increase the volatility through factor  while 

negative returns contribute through factor . Hence  is said to be the skewness parameter 

and displays the leverage effect. The GJR (1, 1) model with reduces to the 

GARCH(1, 1) model. Asymmetric models other than the GJR model include the threshold 

GARCH (TGARCH)model by Zakoian(1990), Exponential GARCH (EGARCH) model given 

by Nelson(1991)and asymmetric GARCH (AGARCH) model of Engle and Ng(1993). The 

GARCH (1, 1) model was also introduced as Autoregressive Moving Average Conditional 

Heteroscedastic (ARMACH) model in 1986 by Taylor (2008).  

A well-known approach for the estimation of unknown parameters of GARCH-type 

models is by using Gaussian likelihood for the innovation { } and the estimator obtained is 

known as Quasi Maximum Likelihood Estimator(QMLE). This estimator is asymptotically 

normal and consistent assuming that the innovation contains finite four moments. However, in 

many situations such strict conditions are not supported like Student-t distribution in which 

degrees of freedom is at most four. Many authors introduced various robust estimators for the 

estimation of the unknown parameters of GARCH model. Robust estimators are based on less 

strict conditions of moments and not influenced by the small fraction of outliers. 

Peng and Yao (2003) proposed an estimator based on absolute deviations through 

logarithmic transformations and termed as the Least Absolute Deviation (LAD) estimator. 

Berkes and Horvath (2004) introduced a class of robust estimators for GARCH model. Muler 

and Yohai (2008) developed two types of robust estimates namely M-estimator and bounded M-

estimator. Mukherjee (2008) studied the asymptotic normality of the class of robust M-

estimators of GARCH model.  Iqbal and Mukherjee (2010) extended the M-estimation approach 

to other GARCH-type models using various estimators such as the QMLE, LAD, Cauchy, Huber 

and B-estimators. Carnero et al. (2012) studied the effect of extreme values on the GARCH 

model volatilities by analysis of maximum likelihood, QMLE, bounded M-estimator and 

bounded QMLE.  Huang et al. (2015) introduced M-estimators using GJR scaling model by 

considering intraday high frequency data. Iqbal (2017) used M-estimators for the evaluation of 

volatility and Value-at-Risk (VaR) forecasting of Karachi Stock Exchange (KSE) during and 

after the global financial crisis. 

In this article, we introduce two new M-estimators as alternatives to QMLE, LAD and B-

estimators for the estimation of the unknown parameters of GARCH-type models. These new 
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estimators, termed ST and AL estimators, motivated from the Skewed-t and Asymmetric Laplace 

densities, respectively, may be helpful in dealing with heavy-tailedness, extreme observations 

and asymmetry commonly found in financial data. The performance of newly proposed 

estimators is compared and evaluated with other robust estimators through a Monte Carlo study. 

Our results revealed that both ST and AL estimators provide accurate estimates than all other 

candidate estimators under study for the parameters of GARCH-type models when errors are 

heavy-tailed and skewed. A real data application is also provided where the VaR forecasts for the 

Karachi Stock Exchange data are obtained. Various evaluation criteria have been used for the 

evaluation of in-sample and out-of-sample VaR estimates and results of empirical application 

revealed that both A Land ST estimators provided reliable risk estimates and outperformed 

competing estimators.  

The rest of the paper is organized as follows: In Section 2, the robust M-estimators of 

GARCH-type models are defined. Section 3 discusses estimation and prediction of VaR along 

with various back testing approaches of VaR evaluation. The results of simulation study and 

application to real data set are presented in Section 4. Finally, Section 5 concludes the article. 

2 ROBUST M-ESTIMATORS 

By recursive substitutions, from (2), we get  

 

For  the variance function is defined as 

 

and . In location model, the M-estimators are stated to be the solution to the 

equations of mean residual functions. Therefore, in scale estimation problem, the M-estimator is 

regarded as the solution of the equations of residual variance function . If the error density 

is denoted by  in(1), then the conditional density for given available information till is 

for . Therefore, by maximum likelihood estimation a random 

quantity is defined which minimizes the negative log-likelihood function 

 or just as gradient function solution:  

 



    International Journal of Economics, Business and Management Research 

Vol. 2, No. 01; 2018 

ISSN: 2456-7760 

www.ijebmr.com Page 12 

 

where: and for a function ,  denotes the derivative or the gradient. 

Huber (1964) proposed M-estimator in which the equation of likelihood consisted the derivative 

of log-likelihood function in location models. A score function was substituted in place of 

 and the solutions of the equations are defined to be the M-estimators. Here, the estimation 

of parameters for scale is considered and the M-estimators are defined using score function . 

Suppose  denote a function under skew symmetric structure i.e. 

i.e. for finite number of points differentiable. 

Let such that . We may define the estimate of the 

true parameter of (1) and(2) as the solution of the following: 

 

The observable approximations  for  is defined as 

 

The M-estimator is then the solution of  

 

Where  It emerges that estimates the 

function of true parameter , defined to be 

 

where the constant   depends on the score function . 

Next, we define various M-estimators.  

Case 1: ST estimator:The Skewed-tdistribution with degrees of freedom is and 

skeweness parameter , is given by 
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 . 

Thus, for ST estimator  and 

 

where , ,

. 

Case 2: AL estimator: The standard Asymmetric Laplace distribution with unit variance and zero 

mean is defined by  where  is usually 

close to 0.5 and denotes the shape parameter of the density. Thus, for Asymmetric Laplace 

estimator 

and  

where . 

Case 3: QMLEstimator:  

Case 4:LAD estimator: , and . 

Case 5:B-estimator: , such that  is constant which is known, 

then .  

In this study, these M-estimators are employed for the estimation of GARCH-type 

models. The computation of these estimators is a crucial problem. We applied the algorithm 

defined in Iqbal & Mukherjee (2010) which is applicable for the computation of all score 

functions. 

3 VALUE-AT-RISK (VAR) 

Value-at-Risk is an approach of measuring the expected loss in a portfolio within a given interval 

of confidence upon the aimed horizon as an outcome of the adverse movements in relevant 
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securityprices (Jorion 2000). Thus,for the known probability , a VaR is stated to 

be the  conditional quantile of returns.  Therefore, VaR at the time , for returns such that 

is defined to be  

. 

Here  denotes the conditional distribution of , provided that the information is available till 

. Therefore, from (1) we have , the  denote innovations { } 

quantile function. Then the VaR estimate is stated to be  

 order statistic of  for  

Value-at-Risk is the most widely used approach for estimation of the market risks. VaR 

enables the risk managers and the financial analyst to make forecast regarding the highest or 

worst portfolio’s possible risk for the specified time-period at a given level of significance. 

Several evaluation procedures along with back testing methods are used for evaluation of VaR 

estimates. 

3.1 Coverage Probability and Rate of Violation 

Supposethe total violation observations are  Let us define 

, then the probability of the empirical rejection is 

 to  is utilized for the analysis of overall predictive performance upon the model of 

VaR.  This probability is also defined as the rate of violation of VaR supplying the VaR forecast 

insight.  

Models in which the conditional quantile returns are correctly specified, true  will be 

equal to . To develop a comparison of the competing models the ratio of  can be utilized. 

The model whose value is near to unity is preferred. If there are ties, then conservative model for 

 is selected to be superior. 

Average Quadratic Loss  

In the evaluation of VaR, the magnitude of losses is also significant. This magnitude of losses 

has been studied by Lopez (1999) who explained the Average Quadratic Loss (AQL) of an 

estimate of VaR as where 

 

3.2 Coverage Test 
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Kupiec (1995) stated the unconditional likelihood ratio test as 

 

where  is asymptotically . Christoffersen (1998) introduced an independent coverage 

statistic which is denoted by . For  and  suppose  denote observations of 

time point such that  among which  is being followed by  Now, 

Let ,then  

 

Christoffersen (1998) conditional coverage test statistic is asymptotically and is defined as

 . 

3.3 Dynamic Quantile Test 

Engle and Manganelli (2004) introduced the dynamic quantile (DQ) test to investigate higher 

order dependence in VaR. The DQ test is defined as follows: 

Let ,be the  response such that is  

 

and . Now considering the linear regression model having the response 

 and a design matrix of order  where   with  and 

consisting the first column of ones. For  term, if  then  and if  then 

 where Then, the test DQ is asymptotically distributed as  and is 

defined as 

 

Here  is the estimator of ordinary least square. 

3.4 Mean Relative Bias 

For thekth estimator , the mean relative bias (MRB) defined by Hendrick (1996) is 

given by 
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,where  and c denoted number of competing VaR 

estimates. 

4 RESULTS AND DISCUSSION 

4.1 Monte Carlo Simulation  

The results of the Monte Carlo simulation are based onR=1000independent replications each of 

sample size n=2000 from model (1) and (2) with the error generated from four different 

distributions. The distribution chosen for errors include the standard normal distribution, 

Student-t distribution with 4 degrees of freedom, contaminated normal distribution 

with  and and Skewed-t distribution with 4 degrees of 

freedom and skewness . For the GARCH (1,1) model the true parameter values were 

0.2 and whereas for the GJR (1, 1) model the true parameter 

valuesare set as ,  and  as these are commonly observed 

empirical applications. 

For the comparative analysis of all M-estimators based on different score functions, the 

mean squared errors (MSE), root mean squared errors (RMSE) and mean absolute errors (MAE) 

for the estimators for the GJR (1, 1) model is given by 

 

 

 

Similarly, these error functions can be defined for the GARCH (1, 1) model by setting . 

Table 1 and Table 2 show the estimated values of MSE, MAE and RMSE for the GARCH (1,1) 

and GJR (1,1) model, respectively, with standard errors presented in parenthesis based on 1000 

replications. The bold entries in Table 1 and Table 2 represent least values for each row. 

From Table 1, it is evident that for normally distributed errors the QMLE gives the best 

performance in terms of lowest MSE, MAE and RMSE. However, in case of heavy-tailed 

contaminated normal and skewed distributions, the results obtained are quite different. For the 

GARCH model, the AL estimator proves to be the best performing when errors were generated 
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from Student-t distribution. For contaminated normal and Skewed-terrors, the ST estimator 

outperforms all candidate estimators in the analysis.  

 

Table 1 

MSE, MAE and RMSE of M-estimators of the GARCH (1, 1) model 

 QMLE LAD B-Estimator ST AL 

Normal Distribution 

MSE 
0.0036 

(0.0054) 

0.0045 

(0.0073) 

0.0074 

(0.0163) 

0.0069 

(0.0176) 

0.0055 

(0.0131) 

MAE 
0.0469 

(0.0369) 

0.0525 

(0.0417) 

0.0645 

(0.0571) 

0.0618 

(0.0555) 

0.0549 

(0.0499) 

RMSE 0.0597 0.0670 0.0861 0.0829 0.0742 

Student-t Distribution 

MSE 
0.0077 

(0.0119) 

0.0051 

(0.0091) 

0.0068 

(0.0160) 

0.0057 

(0.0139) 
0.0049 

(0.0093) 

MAE 
0.0703 

(0.0524) 

0.0560 

(0.0442) 

0.0613 

(0.0553) 

0.0566 

(0.0499) 
0.0552 

(0.0436) 

RMSE 0.0877 0.0714 0.0826 0.0754 0.0704 

Contaminated Normal Distribution 

MSE 
2.5845 

(5.8204) 

0.0160 

(0.0561) 

0.0074 

(0.0271) 
0.0044 

(0.0129) 

0.0116 

(0.0387) 

MAE 
0.1906 

(1.5971) 

0.0845 

(0.0943) 

0.0599 

(0.0621) 
0.0491 

(0.0445) 

0.0773 

(0.0747) 

RMSE 1.6076 0.1266 0.0863 0.0663 0.1075 

Skewed-t Distribution 

MSE 
0.0072 

(0.0104) 

0.0044 

(0.0069) 

0.0063 

(0.0149) 

0.0228 

(0.5163) 
0.0042 

(0.0092) 

MAE 
0.0670 

(0.0518) 

0.0518 

(0.0415) 

0.0591 

(0.0531) 

0.0614 

(0.1379) 
0.0497 

(0.0417) 

RMSE 0.0847 0.0664 0.0795 0.1509 0.0649 

Note: S.E. in the parenthesis. Bold values show minimum value for each row.  

 

Similar results are observed from Table 2 where the QMLE is again found to produce 

accurate estimates for the parameters of the GJR (1, 1) model when errors are normally 

distributed. Again, for heavy-tailed, contaminated normal and skewed distributions, the QMLE 

does not perform well. For all these cases, the ST estimator is found to be the best choice. The 

analysis of Peng and Yao (2003) recommended that when the errors comprise of heavy tailed 
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distributions the LAD estimator should be used. However, the study of Iqbal and Mukherjee 

(2010) indicated that B-estimator gives better performance than the LAD estimator in case of 

heavy tailed errors. The findings of this study reveal that there are estimators that can outperform 

both the LAD and B-estimators. The results show that, in case of non-normal errors, our 

proposed estimators ST and AL can be preferred over other robust estimators for the estimation 

of symmetric and asymmetric GARCH models. 

Table 2 

MSE, MAE and RMSE of M-estimators in the GJR  model 

 QMLE LAD B-estimator ST AL 

Normal Distribution 

MSE 
0.0021 

(0.0018) 
 

0.0033 

(0.0088) 
 

0.0043 

(0.0126) 
 

0.0027 

(0.0136) 
 

0.0034 

(0.0139) 
 

MAE 
0.0327 

(0.0369) 
 

0.0638 

(0.0417) 
 

     0.0707 

   (0.0571) 
 

0.0634 

(0.0442) 
 

0.0568 

(0.0399) 
 

RMSE      0.0462   0.0574 0.0652     0.0523 0.0586 

Student-t Distribution 

MSE 
0.0814 

(0.0728) 
 

0.0635 

(0.0711) 
 

0.0692 

(0.0145) 
 

0.0562 

(0.0028) 
 

0.0584 

(0.0049) 
 

MAE 
0.0213 

(0.0582) 
 

0.0214 

(0.0649) 
 

0.0118 

(0.0092) 
 

0.0093 

(0.0036) 
 

0.0115 

(0.0013) 
 

RMSE 0.2852 0.2519 0.2613 0.2371    0.2417 

Contaminated Normal Distribution 

MSE 
0.0428 

(0.0852) 
 

0.0693 

(0.0835) 
 

0.0469 

(0.0264) 
 

0.0381 

(0.0152) 
 

0.0401 

(0.0173) 
 

MAE 
0.0209 

(0.0369) 
 

 0.0213 

(0.0492) 
 

 0.0117 

(0.0329) 
 

0.0092 

(0.0163) 
 

0.0114 

(0.0196) 
 

RMSE   0.2069 0.2633      0.2166 0.1952 0.2003 

Skewed-t Distribution 

MSE 
0.0077 

(0.0109) 

0.0049 

(0.0074) 

0.0068 

(0.0154) 
0.0047 

(0.0097) 

0.0233 

(0.0168) 

MAE 
0.0665 

(0.0513) 

0.0513 

(0.0409) 

0.0587 

(0.0526) 
0.0492 

(0.0412) 

0.0609 

(0.1374) 

RMSE 0.0876 0.0700 0.0826 0.0686 0.1525 

Note: S.E. in the parenthesis. Bold values show minimum value for each row. 
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4.2 Empirical Analysis 

The daily closing prices of Karachi Stock Exchange (KSE100 index) are utilized in this 

empirical analysis. The data are obtained from the International Monetary Fund (IMF) website 

from 3rd January 2007 to 31st December 2016, a total of n=2424 observations. This time span 

includes the high and low volatile periods.  

The log-returns at time  are defined 

as  and denote the daily closing prices 

of KSE100 index at time t. The whole data set is divided into two parts. The in-sample part 

consists of initial N=2000 observations which is used for the estimation of GARCH-type models 

and the out-sample or validation part consists ofK=n–N observations (K=424). The out-of-

sample part is used to obtain one-day-ahead forecasts of VaR using recursive scheme. 

The daily prices of KSE100 index along with log-returns are illustrated in Figure 1. 

Volatility clustering can be observed with the existence of high and low volatile periods. 

Therefore, main interest lies in modelling and forecasting volatility and risk of KSE during this 

particular period. 

 
Figure 1. Daily Closing Prices and Log-returns of KSE 

Table 3 presents the descriptive summary statistics of KSE100 log-returns. The mean 

log-returns are close to zero and the data are found to be negatively skewed with excess kurtosis. 
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At 5% significance level, the Jarque-Bera (JB) test rejects the normality of log-returns and the 

Ljung-Box test on squared log-returns at lag 20 is found highly significant indicating dependence 

in the squared log-returns. Therefore, GARCH-type models may be appropriate to be fitted to 

this data set.  

Table 3 

 Descriptive Summary of log-returns of KSE 

Mean 0.0274 

Median 0.0355 

Standard Deviation 0.4996 

Variance 0.2496 

Kurtosis 4.2017 

Skewness -0.3745 

Minimum -2.2300 

Maximum 3.5849 

Sum 67.6605 

Jarque-Bera 206.3639 

Q2(20) 162.9328 

Total Observations(n) 2470 

Note: Q2 denotes the LB statistic of squared log-returns on lag 20. 

Both symmetric (the GARCH (1,1))and asymmetric (the GJR (1,1)) models are fitted to 

the KSE data and parameters are estimated using various M-estimators. The estimated 

parameters along with their corresponding standard errors of the GARCH (1,1) model are 

reported in Table4.The estimated parameters based on various score functions are found 

significant at 5% level. Also note, that the estimates of have almost similar value free from . 

TheLjung-Box test at lag 20 on squared residualsat 5% significance level is not found significant 

for all estimators, demonstrating the adequacy of fitting the GARCH(1, 1) model. 

Table 4 

 M-estimates for GARCH (1, 1) parameters for KSE data 

Parameters QMLE LAD B estimator ST AL 

 
0.0102 0.0050 0.0068 0.0209 0.0095 

 (0.0033) (0.0014) (0.0019) (0.0030) (0.0053) 

 
0.1138 0.0774 0.1173 0.1339 0.1495 

 (0.0253) (0.0128) (0.0202) (0.0244) (0.0506) 

 
0.8346 0.8276 0.8369 0.8461 0.8245 

 (0.0351) (0.0281) (0.0352) (0.0224) (0.0559) 

Q2(20) 13.5117 12.6611 12.5791 12.5173 12.4266 

p-value 0.8871 0.8814 0.8846 0.8944 0.8847 
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Note: S.E. in the parenthesis. Q2 denotes the LB statistic for squared residuals on lag 20. 

 

The estimated parameters of the GJR (1,1) model with their standard errors are shown in 

Table 5. Again, all estimates are found significant and the estimates of  are close to each other. 

The Ljung-Box statistic and corresponding p-values are also reported. High p-values of the 

Ljung-Boxtest on squared residuals at lag 20 suggest the adequacy of the GJR (1,1) model for 

KSE data. 

Table 5 

 M-estimates for GJR (1, 1) model for KSE data 

Parameters QMLE LAD B estimator ST AL 

 
0.0095 0.0066 0.0086 0.0214 0.0123 

 (0.0001) (0.0002) (0.0001) (0.0002) (0.0001) 

 
0.0427 0.0405 0.0680 0.0729 0.0768 

 (0.0002) (0.0002) (0.0006) (0.0060) (0.0006) 

 
0.8383 0.8192 0.8397 0.8292 0.8190 

 (0.0013) (0.0011) (0.0014) (0.0012) (0.0010) 

 
0.1956 0.1161 0.1518 0.2958 0.2193 

 (0.0015) (0.0010) (0.0031) (0.0040) (0.0034) 

Q2(20) 9.7408 10.9618 13.7241 12.5074 10.1683 

p-value 0.9726 0.9472 0.8442 0.8975 0.9650 

Note: S.E. in the parenthesis. Q2 denotes the LB statistic for squared residuals on lag 20. 

 

Next, for the evaluation of the VaR estimates, we present the results of various back 

testing measures and tests. These methods are used to evaluate the accuracy of the in-sample and 

reliability of out-of-sample VaR estimates.  

In-sample evaluation of VaR 

Data from 3rd January 2007 to 31st December 2016 (2000 observations), considered as the in-

sample period,are utilized for in-sample VaR evaluation. Table6 reports the results for the 

various backtesting methods for the GARCH (1, 1) model for  = 1%, 5% and 10%. The first 

row of the table shows that, for all estimators, the estimated value ’s is close to the 

corresponding value of p.At , both the unconditional coverage(  and conditional 

coverage (  statistics are not found significant at 5% level indicating that the expected and 

actual proportion of observations falling below the VaR threshold are similar. The DQ test for 

higher order dependence is rejected for all the estimators and the mean relative biases do not 

have much variations. However, the LAD estimator showed the minimum value of MRB. The 
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ST estimator has the smallest value of AQL which indicates the better performance of this 

estimator than others in terms of accurate VAR estimates. 

 

Table 6  

In-sample evaluation of VaR for GARCH model 

 QMLE LAD B-estimator ST AL 

                 99% VaR Confidence Level 

 0.0100 0.0100 0.0100 0.0100 0.0100 

LRuc 0 0 0 0 0 

LRcc 0.4244 0.4244 0.4244 0.4244 0.4244 

DQ 6.0940 7.3448 13.2640 7.3005 7.3259 

MRB 0.0217 0.0019 -0.0177 0.0129 0.0024 

AQL 0.0123 0.0123 0.0124 0.0120 0.0123 

                  95% VaR Confidence Level 

 0.0485 0.0485 0.0495 0.0490 0.0480 

LRuc 0.0956 0.0956 0.0106 0.0424 0.1706 

LRcc 1.2831 0.5590 0.3674 1.1279 0.6947 

DQ 18.0380* 12.2843 9.6292 14.6902* 13.2125 

MRB 0.0174 0.0090 -0.0215 0.0078 0.0098 

AQL 0.0600 0.0598 0.0615 0.0608 0.0593 

                90% VaR Confidence Level 

 0.0990 0.0970 0.0980 0.0990 0.0970 

LRuc 0.0223 0.2018 0.0894 0.0223 0.2018 

LRcc 29.9232* 21.9482* 17.1053* 21.5782* 21.9482* 

DQ 65.6948** 49.3977** 38.5342** 51.0328** 49.3981** 

MRB 0.0003 0.0014 0.0012 -0.0082 -0.0001 

AQL 0.1284 0.1248 0.1248 0.1282 0.1247 

Note: DQ: Dynamic Quantile statistic; * and ** denotes significance at 5% 

and 1% levels, respectively; MRB= Mean Relative Bias, AQL= Average 

Quadratic loss. 

 

In case of , again  and statistics are not found significant. The DQ test 

for no higher order dependence is accepted for all estimators except QMLE and ST estimator. 

Moreover, results also indicate that AL estimator produced the lowest MRB and AQL values 

than competing estimators. For (90% VaR confidence level) both the coverage statistic, 

and  are found to have different results. The  is rejected for all estimators while the 

is found not significant. Also, the DQ test for all estimators indicate the higher order 

dependence in the VaR estimates. Overall, the AL estimator gives better performance in terms of 

lowest MRB and AQL. 
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In Table7, the in-sample VaR estimates results for the GJR (1, 1) model are reported. 

Similar to the results of GARCH (1, 1) model, ’sare found close to the expected value of p.At 

99% VaR level, both coverage statistics are not significant and the DQ test is rejected for all the 

estimator. The MRB and AQL values are found smallest for the LAD and ST estimator, 

respectively. For 95% VaR level, the ST and AL estimators produced the smallest MRB and the 

AQL, respectively. Finally, for 90% VaR confidence level, the , and DQ tests are found 

to be non-significant for all estimators except for the QMLE. Again, we noted the superior 

performance of the AL estimator in terms of smallest AQL and MRB. Therefore, the overall in-

sample VaR evaluation results reveal that both ST and AL estimators provide better results for 

KSE100 Index and may be preferred over frequently used estimators for VaR. 

Table 7 

 In-sample evaluation of VaR for GJR model 

 QMLE LAD B-estimator ST AL 

                99% VaR Confidence Level 

 0.0095 0.0095 0.0095 0.0095 0.0095 

LRuc 0.0514 0.0514 0.0514 0.0514 0.0514 

LRcc 0.4351 0.4351 0.4351 0.4351 0.4351 

DQ 6.4629 6.6804 7.8439 6.3749 6.6670 

MRB -0.0123 -0.0013 0.0024 0.0064 -0.0026 

AQL 0.0123 0.0124 0.0126 0.0123 0.0124 

                95% VaR Confidence Level 

 0.0480 0.0480 0.0465 0.0455 0.0480 

LRuc 0.1706 0.1706 0.5276 0.8780 0.1706 

LRcc 0.3619 0.9694 1.1196 1.3507 0.9694 

DQ 5.1190 3.1735 2.5667 3.0820 3.1641 

MRB 0.0146 -0.0024 0.0014 0.0020 -0.0019 

AQL 0.0601 0.0601 0.0585 0.0578 0.0601 

                 90% VaR Confidence Level 

 0.0960 0.0960 0.0970 0.0955 0.0945 

LRuc 0.3599 0.3599 0.2018 0.4561 0.6835 

LRcc 9.6063* 2.4694 2.0372 2.0757 3.2466 

DQ 24.6727*

* 

9.3620 8.7354 10.1566 11.0926 

MRB -0.0023 0.0020 0.0010 -0.0005 0.0027 

AQL 0.1223 0.1206 0.1211 0.1205 0.1190 

Note: DQ: Dynamic Quantile statistic where * and ** denotes significance 

at 5% and 1% levels, respectively; MRB= Mean Relative Bias, AQL= 

Average Quadratic loss. 
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Out-of-sample evaluation of VaR 

In this subsection, the performance of M-estimators is evaluated for one-step-ahead forecasts of 

VaR for KSE data. The out-of-sample predictions are valuable for risk and portfolio management 

and also for investors who desire to measure the model’s performances on basis of risk forecasts. 

The results at different VaR confidence levels are reported in Table 8 for the GARCH(1, 1) 

model. First, we noted that values are close to the corresponding rejection probabilities for all 

estimators except the QMLE. Both coverage statistics,  and are found non-significant at 

5% significance level which reveals that proportions of violations are approximately equal to the 

expected proportions for 99% and 95% VaR confidence levels. The conditional coverage tests 

was rejected for 99% VaR level. The null hypothesis of no higher order dependence in VaR 

violations cannot be rejected using the DQ test at all VaR confidence levels. The AL estimator 

produces minimum MRB whereas the ST estimator is found to show the least AQL.  

Table 8 

Out-of-sample evaluation of VaR for GARCH model 

 QMLE LAD B-estimator ST AL 

90% VaR Confidence Level 

 0.0047 0.0071 0.0094 0.0047 0.0071 

LRuc 1.4863 0.4080 0.0140 1.4863 0.4080 

LRcc 1.5147 04650 0.1093 1.5147 0.4650 

DQ 1.5082 0.4918 0.2073 1.5382 0.4811 

MRB 0.0229 -0.0046 -0.0182 0.0284 -0.0021 

AQL 0.0053 0.0077 0.0101 0.0052 0.0077 

                          95% VaR Confidence Leve 

 0.0354 0.0377 0.0377 0.0354 0.0377 

LRuc 2.1164 1.4616 1.4616 2.1164 1.4616 

LRcc 2.5461 1.7743 1.7743 2.5461 1.7743 

DQ 3.8006 3.8849 4.0229 3.7851 3.8837 

MRB 0.0358 -0.0100 -0.0281 0.0296 0.0004 

AQL 0.0410 0.0437 0.0440 0.0410 0.0437 

                         90% VaR Confidence Level 

 0.0755 0.0755 0.0802 0.0731 0.0755 

LRuc 3.0705 3.0705 1.9700 3.7212 3.0705 

LRcc 7.8999* 7.8999* 5.7776* 9.1214* 7.8999* 

DQ 10.1665 10.7410 9.8956 11.7510 10.7138 

MRB 0.0157 -0.0004 -0.0130 0.0125 0.0001 

AQL 0.0877 0.0877 0.0926 0.0852 0.0877 

Note: DQ: Dynamic Quantile statistic; * and ** denotes significance at 
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5% and 1% levels, respectively; MRB= Mean Relative Bias;AQL= 

Average Quadratic loss. 

 

The out-of-sample VaR estimates from the GJR(1, 1) model are reported in 

Table9.Results similar to the out-of-sample VaR evaluation of the GARCH(1, 1) model are 

observed with estimators such as LAD, ST and AL providing better forecasts for one day ahead 

VaR. 

Table 9 

Out-of-sample evaluation of VaR for GJR model 

Note: DQ: Dynamic Quantile statistic; * and ** denotes significance 

at 5% and 1% levels, respectively; MRB= Mean Relative Bias; 

AQL= Average Quadratic loss. 

 

Overall, the performance of proposed Skewed-t and Asymmetric Laplace estimators are 

found superior than other estimators understudy for the KSE data whereas the study of 

 QMLE LAD B-estimator ST AL 

        99% VaR Confidence Level 

 0.0047 0.0071 0.0071 0.0071 0.0071 

LRuc 1.4863 0.4080 0.4080 0.4080 0.4080 

LRcc 1.5147 0.4650 0.4650 0.4650 0.4650 

DQ 2.5913  1.7279 1.6913  1.7279 1.7279 

MRB 0.0147 -0.0096 -0.0015 -0.0096 -0.0096 

AQL 0.0081 0.0076 0.0074 0.0074 0.0073 

95% VaR Confidence Level 

 0.0330 0.0330 0.0354 0.0330 0.0330 

LRuc 2.9095 2.9095 2.1164 2.9095 2.9095 

LRcc 3.4258 3.4858 2.5461 3.4258 3.4258 

DQ 4.3147 4.2478 3.7423 4.2478 4.2478 

MRB 0.0388 -0.0056 -0.0184 -0.0056 -0.0056 

AQL 0.0384 0.0383 0.0407 0.0383 0.0379 

             90% VaR Confidence Level 

 0.0660 0.0684 0.0684 0.0684 0.0684 

LRuc 6.0998* 5.2337* 5.2337* 5.2337* 5.2337* 

LRcc 6.9386* 7.2629* 5.8998* 7.2629* 7.2629* 

DQ 7.2213 7.9970 7.1286 7.9970 7.9970 

MRB 0.0204 -0.0046 -0.0085 -0.0046 -0.0046 

AQL 0.0864 0.0791 0.0790 0.0791 0.0791 



    International Journal of Economics, Business and Management Research 

Vol. 2, No. 01; 2018 

ISSN: 2456-7760 

www.ijebmr.com Page 26 

 

Iqbal(2017) reveals B-estimator to be a better fit for this data. Analyses of M-estimators indicate 

the need for using robust estimators ST, AL, LAD and B-estimator for estimation and prediction 

of VaR than the commonly used QMLE. 

5 CONCLUSIONS 

In the article, two robust estimators based on the score functions obtained from Skewed-t and 

Asymmetric Laplace distributions are proposed for GARCH-type models. Results of simulation 

study revealed the superior performance of these estimators over other competing estimators like 

QMLE, LAD and B-estimator in terms of providing accurate estimates of parameters when 

errors were generated form heavy-tailed, contaminated and skewed distributions. These 

estimators were also applied in an empirical application to daily log-returns of Karachi Stock 

Exchange. The accuracy and relative performance of all estimators under study, in estimating 

and predicting VaR, were evaluated through various backtesting approaches. The findings of 

empirical analysis highlighted that the ST and AL estimators provide better estimates of both in-

sample VaR and the out-of-sample VaR. Therefore, it is suggested that for accurate estimation of 

GARCH-type models and better forecasts of VaR, these estimators may be used especially for 

non-normal.  
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